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COMPUTATION OF UNSTEADY AERODYNAMIC FORCES ON
HELICOPTER ROTOR BLADES

,Jean-Joil Costes
Office National d'Etudes et de Recherches Aerospatiales

Introduction

In an article in La Recherche Adrospatiale [1] R. Dat

proposed a new method to calculate the unsteady aerodynamic

forces acting on helicopter blades. Based on the use of the

theory of pressure doublets, this method permits introducing the

effects of air compressibility in a rigorous manner. A practical

application is set forth here, and the numerical results are

compared with the results provided by the vortex theory and

with experimental results.

I. General Equations

I, 1. Case of the Incompressible Fluid

Let us consider a perfect fluid endowed with a uniform

motion of velocity U . An obstacle placed in the fluid modi-

fies the velocity at every point in space. At P velocity becomes

U(P) = U. + V(P):

The following restrictions are imposed on the disturbance

velocity V(P):

1) V(P) small compared t6 UC*

* Numbers in the margin indicate pagination in the foreign text.
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2) There exists p(P), which is a scalar function of the

point P such that V(P) = grad[ (P)]; c(P) is the velocity

potential.

In the case of an incompressible fluid, function p(P) must

moreover verify equations

2 + ..... o conservation of mas.s, (1)

d [PP [see ref. 1] motion equation, (2)
dt

with:

p. = density, p. = upstream pressure at infinity,

p = pressure at the point involved.

Equations (1) and (2) are written with an absolute coordinate

sytem Oxyz.

The presence of 4 particular derivative of 4, in Eq. (2),dt
suggests introducing the scalar function

O(P) = - - _

dV d
Fluid acceleration, being yielded by y(P) dt- [gradd

u grad [(P)], 4(P) is an acceleration potential. It must

moreover verify relations

-- (3)
y(p). = grad I (P)],

-+ + -= obtained by derivation (4)
Dx 

2  
Zy a from (1),

.=- [P-Pi] analogous to Eq. (2). (5)
P
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Since Eq. (4) is linear, any linear combination of particu-

lar solutions verifies (4). Thus, for example, the potential

of a source (or of an electric charge) placed at P0 responds to

equation (4) at every point in space other than P0. The nature

of the singularity at P0 makes the potential source very

suitable for the solution of a thickness problem. Another partic-

ular solution, the pressure-doublet potential, obtained by

causing a source and a well of equal intensity and inversely

proportional to the distance to approach one another according to

the direction np, is used in the case of a lift problem. One

shows that the potential obtained has a limit. This limit still

satisfies Eq. (4). The potential, at moment t at the point P,

for an intensity doublet q(t) situated at the same moment t at

point P0 is yielded by the expression (Fig. 1).

PoP. no

4Po - (6)

with D = IPPI and 0 angle oriented from POP to no, oneuobtains

the equivalent expression.

q(t) cos 0
(P't)= - - ( )

This potential when D approaches 0 now has to be inter- /3-3

preted. If one considers a surface on which a distribution of

doublets with axes perpendicular to the surface and of intensity

q(P" t) is given, it is possible [2] to show that q(P,t) is

linked to pressure difference Ap through the surface by the

expression (Fig. 2).

q(P,t) =
pF, (8)
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Expression (8) yields a simple
P

interpretation of the lifting sur-

I rface since the latter can be

o / represented by a sheet of doublets

Po_ with axes perpendicular to the

surface and of intensity propor-

Fig. i. tional to Ap(P,t). In the case of

a wing with a large aspect ratio

the main interest may lie not in the

distribution of Ap at every point of the

wing, but on the,. distribution of lift

U 00_ M 7spanwise.

If the reduced motion frequency of

the wing is low, if deformation along the

Fig. 2. chord is negligible and if there is no

control deflection, this lift can be

determined schematizing the wing by means of a lifting line,,,

situated in the forward quarter.

The intensity of the doublets placed on this lifting line is

yielded by

q(t,y)= ApQyx) dx,
X. 'C (9)

which amounts to linking this intensity to the pressure integral

on an elemental section.

The acceleration potential at any given point in space is

the sum of the potential created by each doublet:

(P -q(t,y)cos 0(y,t)
(Pt) = , dy, (10)



Y .expression (10) being obtained C

Sz substituting (9) in expression.,,

(7) and integrating over the

U00 entire length of the

Actually one is not seeking to

obtain the acceleration of the
P

Sfluid but its velocity. At

about a constant the velocity

potential is yielded by
(S)

Y1

Fig. 3. (Pt) =(Pd.

Replacing *(p,t) by its value given by (10) we have:

Sl q (-,y) cos )y,
(t)= d ... 4- dy. (11)

It is therefore necessary to know the geometric locus (S) /3-4

(Fig. 3)of the~if ing line which shifts with time. For a wing

in horizontal motion at a constant velocity U 0 we have x

= -U0 (t - T) and (11) becomes

Sq (Po) cos 0 (P'P.' d(P,t) - . [ f 4 D . dy dx. (12)
(PoP)

We thus obtain a surface integral extending to the portion

of the plane swept by the lifting line up to moment t.

When P.is a point of (S), D2 (pop) can cancel out. To in-

terpret f(P,t) as P approaches the geometric locus (S) (Fig. 4)
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we consider two points P1 and

P2 symmetrical with respect to

(S). Formula (7) shows that the

potentialscreated at these two

, (points by a doublet of axis n0
perpendicular to (S) are iden-

tical in absolute value and of

2 -opposite sign, since 6 is an

Fig. 4. oriented angle.

Integrating over (S) using formula (12) one obtains

c(Ps) = - 1(P1 ) whence: potential is antisymmetric and dis-

continuous with respect to (S). Their fluid disturbance velocity

is yielded by V = grad (4).

Let us consider four neighboring and symmetrical points with

respect to (S) (Fig. 5). By making the two points situated on

the same side of (S) it is seen that

opposite values are obtained for the

velocity components parallel to plane (S)

x9 x and an unchanged perpendicular component.

The same reasoning applies to a nonplanar

surface (S), since locally the latter may

~x _× be likened to a tangent plane. (S) thus

appears as a discontinuity zone for the

disturbance velocity components situated

on the plane tangent to (S). The locus

of this discontinuity, which can be

,x likened to a sheet of vortices either free
(S)

or linked to the wing (Fig. 6) and (S),

and which has been defined as a geometric

- 2 locus of the lifting line constitutes-the

Fig. 5. wake of the wing.

6



1,2. Case of the Compressible
Fluid

The same approach, which

was used inLthe preceding

paragraph to go from the

Fig. 6. velocity potential to the

acceleration potential,, is

encountered here. In a linearized compressible fluid, the

acceleration potential is the solution of Eq. (13), which

expresses conservation of mass:

.... 2...... (13)
.x'y- 'z2 a" d(

a is the speed of sound in the ,medium involved, Oxyz is an

absolute coordinate system/i

In the first approximation the equationoof motion is given

by the expression

where p. and p. are the upstream pressure and density at infinity.

Expressions (13) and (14) are written in anabsolute coordinate /3-5

system Oxyz.

Eq. (13) leads to the introduction of a delayed potential.

As in the preceding paragraph, the linearity of the equation

permits the construction of a solution by superposition of basic

solutions. The acceleration doublet, which is equivalent to a

lifting surface element, is particularly suited to the lift

problem.
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The potential.of the motion doublet is yielded by (15) [1]:

....-. dno

(P) dq n.D q( ;)(D.o( D) dr+  
2

( )  - (15)
dr 4x D2a 1-D 4a 1D - D a2 1 -Da I a. D

(1)

In this formula -P = 5 (Fig. 7),

O is the velocity of P0 at moment T,

dq/dT(T) is the derivative of the doublet intensity at

instant T;

T is-determined by expression (16)

t- --  (16)

The potential created at

P at moment t by a doublet

P placed at P0 is determined by

the intensity of the doublet

at moment T.

no

S~~ The delayed potential

expresses the fact that the

Fig. 7. waves are displaced at finite

velocity, a. One goes from the

1 In the article of Rech. A6rosp., No. 2, 1972 (March-April),
pp. 91-106 the term at dn 0 /dT of formulas (15) and (17) was
omitted. The results presented here take it into account.
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acceleration potential to the velocity potential as in the pre-

ceding paragraph, i.e., by an integration, from -- to T1 , where

T1 is yielded by

P-- ! = P

The waves emitted by the doublet between t and T1 have not

as yet had time to reach point P. The interpretation of the wake

as a discontinuity zone of the tangential components of velocity

call for nO to be taken as normal to (S). The demonstration is

made in a manner similar to the one given for an incompressible

medium. The presence of the acceleration term y0 introduces

only a few complications. In the case of a helicopter or of

a propeller whose blades are schematized by a lifting line (Fig. 8)

the velocity potential at point M at moment t is, taking into

account the notice (V0 .n0) = 0, yielded by expression (17). It

is obtained in the same manner as (11) from a kernel (15), with

a change of variable:

it becomes:

9(P, t) :(r) drodr drodr

4 47a 1 - aD IR" ---- 4.alD12 1 - 2

2 In the article of Rech Aerosp., No. 2, 1972 (March-April),
pp. 91-106 the term dnO/dT of formulas (15) and (17) was
omitted. The results presented here take it into account.
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-4-a' D 1 I -

In the case of the three-/3-6

blade helicopter shown in

~M Fig. 8, it is necessary! to

integrate over the-three wake

sheets created by the three

lift lines. The interactions

of one blade with the other

also taken into account, in

formula (17) T 1 depends on

r and one integrates in the

portion of the sheets limited

by the line T 1 (r) extending

to infinity. Fig. 8 gives a
Fig. 8. good idea of the domains of

integration (hachured area).

II. Method of Numerical Computation

We propose to apply the linearized theory to propellers;

and helicopters in permanent motion, i.e., when lift and blade

motion are periodic functions of azimuth.

In order to do this lift will be expanded in a given

basis of functions and the disturbance velocity created by each

of these base, functions will be determined. We will then seek

the combination of base functions permitting the verification

of the velocity conditions perpendicular to a certain number

of points distributed on the blades for azimuth values.
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We will see below that the disturbance velocity corresponding

to each of the base functions actually depends only on the case

of flight, forward and rotation velocities, and the plane shape

of the blades. It does not depend on other blade characteristics,

twist, collective pitch, rigidity. With the same computations,

one can thus express conditions at the different limits, changing

the combination of base functions, which requires only a few

supplementary computations.

II,1. Representation of Lift

A propeller or helicopter blade will be diagramatically

represented by a lifting segment situated in the forward quarter.

Designating by r the distance of a blade section to the axis of

rotation and by F(t,r) the integral of the pressures on this

section, one has F(t,r) = /chord Apdx. The elemental section is

replaced by an intensity doublet q(t,r) = F(tr) situated at a

distance r from the axis.

Assuming that the regime has been established, F(t,r) is

a periodic function of t or of the local azimuth, 0 = Qt + a(r).

If one wishes to define F.(t,r) at a fixed point ri, F(t,r) can

be expanded in a Fourier series:

F(t,ri) = z~ + Y X cos ji(i-t + ) + Y, sin i(t + c, ). (18)
j=1 j=1

Phase setting a(ri ) is introduced to take into account a

possible setting of the time origin along the lifting line., In

the case of a lifting line passing through the axis of rotation

a(ri)'will be a constant.

Relation (18) takes only specific points (ri ) into account.

In order to describe the.evolutien of lift along the blade, at

11



a given moment t, one can, for example, select n points ri and

seek to interpolate force between these points (Fig. 9), by

analogy with the theory developed

for the wing [6], points ri are

defined as being Gauss.. points

for the weight function

/I - =1, -1 < n < 1, with

Ri = 2r - R - R
R 1 0

n =  . These
R R/ 10

points are optimum points for

•j the wing.

Fig. 9. The interpolation between

the points ri is done by means

of polynomials of Lagrange, polynomial Li(r) being the zero

polynomial at points ri for j Z i and equal to 1 for ri (Fig. 10).

We will now take

Po nmial L2 F(t, r) = Li(;r) F(t, ri) (19,=(19)
. I r2 r

which enables one to make F(t,r) /3-7
Fig. 10. at the fixed moment t coincide

with the values of F(t,r) computed at points ri. In order to

take into account the evolution of the aerodynamic loads in

the course of time, F(t,r i ) is replaced in (19) by the value

furnished by expression (18):

n m

F(t,r) zLI (r) + Ex cos j(t + ci()(r ) r)+ Y Y sin i(0t + (r))L (r). (20)
=1= j=1
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In (20) a(r i ) has been changed to a(r) for better considera-

tion of the geometric definition of the lifting line. It has been

determined that (20) agrees with the value of F(t,r i ) yielded by

(18) for r = r . Formula (20) can be used directly. However,

at the two ends of the plate, lift varies very rapidly, and a

large number of points ri will be required to determine it if

one was not careful to introduce in the expansion of F(t,r)

base functions whose behavior is the same as F(t,r). In the

case of a wing of finite span, theory anticipates that in the

vicinity of the ends, the function F(t,r) decreases as the square

root of the distance to the lateral edges, proportionally to

Assuming that the neighboring conditions are satisfied for

the blade, (20) will be multiplied by

S2r - R, - RoV1-' , with = ------.

The model proposed for F(t,r) then being closer to reality, less

points ri and therefore less unknowns Zi, Xij, Yij (i varying

from l'to n and j from 1 to m) will be required for the same

accuracy. The intensity of the doublets situated on the lifting

line is yielded by the formula

q(r,t)= Z i , (r) + X XZ i cos i(t + sin(r))Lir) +(r (r) (21)
S = i=1 j= i= 1 j=

11,2. Collocation Method

Coefficients Zi, Xij Yij are generally unknown, and the

entire problem consists precisely in determining'them. Formulas
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(11) in incompressible flow and (17), for a compressible medium,

in which q is replaced by the value furnished by expression (21),

permit the calculation of the potential at any given point in

space. Knowledge of the potential determines the disturbance

velocity, and the collocation method consists in determining

this velocity at a certain number of duly selected points.

Blade interactions are taken into account very simply, extending

the sums of formulas (11) and (17) to the wakes of all the blades

with, on each ocacasion, the appropriate value for a(r).

For example, in the case of a three-blade helicopter:

al(r) for the firstiblae,

a2 (r) = + al(r ) for the second blade,

4rr
a3(r) = -4 + al(r) for the third blade.

Definition of Collocation Points

The blade is likened to a lifting line. By analogy with the

wing theory [5], one is led to place this line in the forward

quarter and to determine the normal velocity induced along a

line situated in the rear quarter.

More specifically, the collocation points will be placed

at distances ri from the axis of rotation, which are ri have

already served to determine the Lagrange polynomials. In order

to justify linearization, it is assumed that each blade is turned

back on its own wake, and that it is povided with slight motions

in the direction perpendicular to this wake.

Under these conditions, the velocity component perpendic- /3-8

ular to the blade is always low opposite the tangent component,
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i.e., if the angle of attack is small, thus justifying I

linearization.

Velocity Induced by the Wakes at the Collocation Points

It is proposed to study the induced velocity component per-

pendicular to the blade, by the method given in reference [1].

The potential is calculated at two points P1 and P 2 (Fig. 11)

situated on one same perpendicular to the wake, at height h and

h + Af. The foot of this perpendicular passes through the

collocation point. The velocity induced in the direction per-

pendicular to the wake is yielded by W(h,Ah) = p(P1 ) - (P2)
4 Ah

We wish to know W(h;Ah) for h = 0 and Ah approaching 0.

The presence of the term at 7 in formula (11) and analogous

terms in compressible flow make the computation of h = 0 dif-

ficult, since it is necessary to introduce a limit of integral

(11) when h = 0. The numerical computations show however that

4(P) varies almost linearly with h over a very large distance.

Only experience makes it possible to establish the compromise

between the required accuracy

for the induced velocity and

the computation time necessary.

For example, in the case of

Lifting line, - a blade 1.25 m long, 100 mm

chord,h = 3.5 mm was chosen,

or 3.5% of the chord, and

Ah*= 0.5 mm, or 0.5% of the

chord.

Fig. 11.
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Computation of Aerodynamic Forces

The aerodynamic forces are determined by the unknown

coefficient Zi, Xij , Yij of formula (21). The velocity perpen-

dicular to the collocation points Pk, at moments tl, will be

expressed as a function of these coefficients and it will be

written that it is equal to the projection of the velocity of

point Pk normal to the blade.

The potential at point P at time t, results from the in-

tegrations in r and T, explained by formulas (11) for the

incompressible fluid and (17) for the compressible fluid. In

these formulas, it is necessary to replace q(r,T) by (21), and

the vectors D = P O ', 0 O are determined by the trajectory of

each blade and depend on r and on T and on the height h, or

h + Ah above the wake.

When the computation for two points situated on the per-

pendicular to the wake passing through collocation point Pk
at time tl is made it is possible to determine the finite dif-

ference which makes it possible to express W(Pk,tl) by algebraic

equations of the form:

W(Pk, 0) = Zi k 1) + X (P ,) + I I j ) (22)
i=1 i=i=1 --. ----. i j= (22)•

Coefficients wij are integrals in r and T:

w 0)(Pktl) is the induced velocity at point Pk at moment-tl,

when.the intensity of the doublets is yielded by:

q(r) =
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wl (Pkt l ) is the induced velocity when the intensity of the

doublets is yielded by

q(,.)= L,(r) cos i (I + ))

W2) (Pk,tl) is the induced velocity when the intensity of the /3-9

doublets is yielded by

q(r, r s

(0)The numerical computations consist in seeking the w )

(1) (2)ij
wij wi j which are derived from the integration over the combined

wakes with more or less complicated but known functions.

Eq. (22) expresses the W(Pk,tl) as a function of Zi, Xij,

Yi' by a matrix relation. By taking as many collocation points

and times tl as there are unknowns, the matrix.of the wij is

normalized and, after inversion, we obtain the matrix that ex-

presses the unknowns Zi, Xij, Yij as a function of the normal

velocities W(Pk,tl). Now, the latter are expressed directly as

a function of parameters that define the motion and deformations

of the blades by the condition of tangency.

Condition of Tangency of the Blade

At any point P whatsoever of a blade, at moment t, the

perpendicular velocity induced by the wakes, W(P,t), must be

equal to the projection on the perpendicular to the blade of the

velocity of point P. The applications proposed in Chapters III

and IV concern a propeller with rigidly mounted blades and a
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helicopter comprising three hinged rigidly mounted blades whose

motion is given by experience. The computation of W(P,t) in

these two specific cases will be found below.

a) Case of a rigidly mounted propeller (Fig. 12):

OXYZ reference to an absolute co-

ordinate system;

z O'xyz coordinate system linked to

the propeller axis;

point P of the blade is determined
y

01' - in polar coordinates in O'xyz by

(r, Ot + a(r))

d

dt

r cos (ot + z(r)) -ri2 siIi (nit + (r))

OP r sin (it + o(r)) r , cs (t + (r))

X O U ,

Fig. 12.

in the absolute coordinate system

the components of the perpendicular to the blade are nx, ny, nz
By designating the setting of the airfoil at point P by i, we

have:

n, = sin i sin (Qt + a (r))

p ny = - sin i cos (Qt + x(r))

nz, = cos)

W(P, t) = V, r = - ri sin i + U,, co i.

b) Case of the rigid-blade helicopter, with f1apping

hinge (Fig. 13):

The OXYZ coordinate system is an absolute coordinate system;

O'xyz has axes parallel to those of the absolute coordinate

system, O' being linked to the rotor head. The displacement O'

18



is defined by the velocity U0 and angle A situated in the OXZ

plane.

01, the flapping hinge; its position is determined by r 0 and the /3-10

angle Qt + a. The coordinate system 01 x1 lz 1 is defined by

Fig. 13,

01x1 and 01 1 lie in the O'xy plane.

02x2Y 2 z2 is obtained from 01 x1 lz 1 by rotation of B around the

axis 01 xl. The coordinate system 02xLLzL is derived from

02x2Y 2 z2 by rotation of i around axis 02 Y2 . Axis 02xL defines

the direction of zero lift of the airfoilL., Rotation i expresses

the twist of the blade and the collective pitch imposed thereon.

Z

X I

Fig. 13.

Any point P whatsoever of the blade is defined by its

coordinates in 02xLY LZL in the direction of zero lift, its co-

ordinates are (xL,Ol,0). Knowing r, B(t), 2t + 0 it is possible

to compute its velocity:

19



d _ d , d d d
= - OP = -- 00' + - 0'01 + --- 0 + -- 0 2P.

dt dt dt dt dt

The perpendicular to the blade n at P is parallel to the axis
p

02zL. The scalar product of these two vectors yields the normal

velocity:

Sw(P. t) n I V

The formulas for the change of base given below permit O to

be expressed in the absolute coordinate system. Their derivation

with respect to time yielded by V The same formulas express
p

n in the absolute coordinate system:

z - sin i o cos i ZLx O o O
r ) cos cos () -sin ()

X i U, Cos At 4 r- Cos t+ ) sin (it + o) cos (t + o) x
Y ro sin (+!t + o) + c os (t + o) sin (!t +ao) O yi

Z U sin At.\ 0 0 1 z

We obtain

W(P, t) = - U cos \ sin i sin (t + co)- sin f(t) cos i cos (t t + ,o).

+- U; sin .\ cos ~(t) cos i -- sin i ro0 + (r - ro) cos (t)j - sin P (t)"-xL + (r- ro) (t) cos i. (23)

20



II,3. Geometric Definition of Wake /3-11

The linearized theory identifies wake, defined as the

groups of points in :space having velocity discontinuity proper-

ties with the geometric locus of the lifting segment moving in

time.

This hypothesis, which is common in the aircraft wing

theory is less justified in the case of a propeller or a heli-

copter. In these. two applications, in effect, it will be

necessary to take into account wake deformations in the compu-

tations of the coefficient w . However, the main thing is to

respect the distance between each blade and the wake sheet of

the preceding blade, since it is the latter which, due to its

proximity, has the greatest effect. That is why in numerical

applications only the "cylindrical deformation" is taken into

account. This is done by modifying the velocity component

normal to the rotor disk: this component, which is equal to

U 0 sinA isreplaced. by U0 sinA + v, where v is a velocity correction

parameter, generally small when compared to the points of the

planes, and determined by the lift of the rotor. Thanks to this

expedient,tb:h'-lifting linedescribes a wake in much better agree-

ment with thei.actual wake, at least in thevvicinity of the disk.

It is evident that this parameter does not make it possible

to take into account wake contraction, but the latter appears to

,have a negligible effect in the case of helicopters in forward

flight, as shown especially by the results presented in [3].

It should be stated that v does not affect the computation

of normal velocities, W(Pk,tl) yielded by formula (23).

Remarks. The small motions.and deformation of the blades

modify the shape of these wakes, but they do affect the

21



deviation of the successive wakes when the periodic regime is

attained, since in this case all wakes are modified in the same

manner. Under these conditions coefficients W are indepen-
ij

dent, to ab.but-the second order, of the parameters defining these

motions and vector = F0 of formula (17) will be determined

exclusively by the forward speed, the rotation speed and the

tilt of the rotor, as long as the other motion parameters, such

as the flapping angle, remain small. Thus, as long as the

conicity of the rotor is small, the w (k ) can be computed assuming
ij

that B(t) E 0.

Conversely, the small motions and deformations of the

blades affect the computations of the velocities W(Pk tl) normal

to the collocation points (23).

III. Comparison of the Results Obtained by the Doublets Method
and by the Vortex Method

The numerical application was carried out according to

the principles developed above for an incompressible fluid. The

case studied refers to a propeller turning at a speed of 30 revo-

lutions per second and advancing at a speed of 111 m/sec. The

diameter of the propeller was 2.5 m and that of the hub 0.5 m.

Mach numer 0.85 is attained at the free end of the blade. As

previously indicated, the cylindrical deformation introduced for

the wake is determined by the momentum assuming an induced

velocity distributed on the rotor [4]:

T

2,R 2 [ ~],= Total propeller thrust

R being the radius of the propeller and Um the forward speed.

The .wake permits the computation of the true induced

velocity which is, to be sure, far from uniform. In the

-22



applications studied, v is equal to 1.5 m/sec at U, to 111 m/sec

and we actually have v << U

When v is small in the case of a propeller it is possible

to take compressibility into account by means of the Prandtl

correction. This amounts to multiplying the local incidences

by l//i - M7, M being the local

Mach number. In the case of a

propeller, the velocity Um is

perpendicular to the plane of

the rotor. Lift does not depend

on the azimuth and formula (22)
S' is simplified, since Xij and Y

"'2 -- are 0. We now only have to

calculate wio (Pk,t) for any

Sgiven time.

Fig. 14. Assuming /3-12

n = , (P t) z wi (P t)
i=1

we will seek in five points P1 "' P5 coefficients wio  (Pt)

obtained by integration over the wakes. The five points are

situated on the line of their rear quarter of the blade. The

latter is considered as falling back on its own wake. Point

Pk is situated at the distance rk of the rotation axis (Fig. 14).

The rk have already made is possible to define the Lagrange

polynomials (Figs. 9 and 10).

For the purpose of comparison with the vortex method which

is the most classical, a first computation was made with the

formula of the incompressible doublet (11), and the effect of

compressibility was introduced with the Prandtl correction.
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N/ m f The results are shown

u=111im/s in Fig. 15 and compared
1200 - I with the results computed

C30 tr/s at SNIAS (Societe Nation-

1000- ale Industrielle Aerospa-

S-=- \ tiale) by R. Hirsch with

80 ----------- ._ g -- the vortex method. In

Sthis computation the wake

600 -- -- is represented by vortex

/ -arrays and the induced

00-- - /--------- - velocity is determined by

/ the Biot and Savart law.

200 - - -------- But as this is only valid

in the case of an incom-

0,2 0,4 0,6 0,8 r/R / pressible fluid, the

Fig. 15. Three-blade propeller effect of compressibility

-- SNIAS computation can only be introduced by

-- o-- Incompressible doublets means of the Prandtl cor-
(Prandtl approximation) rection.

.---. Incompressible computation
r/R Normalized distance to the

propeller axis. Mach = 0.85 Fig. 15 represents
N/m Lift per unit length

the distribution of lift

as a function of the

radial coordinate.

It is observed that the results yielded by the vortex method

and by the doublet method are virtually identical.

IV. Results in a compressible fluid

As the preceding numerical computation serves as a test to

verufy the numerical integration methods used, the latter were

applied to the doublet theory in a compressible medium.
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The calculations made apply to:

1) The propeller studied above, which will permit a compari-

son between the direct computations and the corrected compressible
theory computations.

2) A case of helicopter flight and the comparison between

theory and the experimental data.

IV,l. Numerical Application in the Case of the.Propeller

The integration and solution methods are copied from those

used. in an incompressible fluid. The results obtained are

shown in Fig. 16. The curve marked "SNIAS computation" '' is

the same as the one in Fig. 15. It is obtained by a vortex

method with a Prandtl correction. The curve marked "compressible

doublets" respresents the direct computation by the doublet /3-13
method in a compressible fluid (formula (17)), and does not

therefore involve corrections. For purposes of comparison, the

third curve yields the results of computations made by the

doublet method in an incompressible fluid without the Prandtl

correction.

Examination of Figs. 15 and 16 show the good agreement of

the three theoretical approaches and justifies the Prandtl

correction in the case of the propeller.

IV,2. Numerical Application in the Case of the Helicopter

Comparison Between Theory and Experiment

The existence of the experimental survey made'at Modane,

at the time of the July 1970 tests, with a S.N.I.A.S. experi-

mental rotor permitted the comparison between theory and
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experiment in the case of

helicopter flight compat-

1U2l mr/s able with the linearity

Sconditions required by
o 30 tr/s

100 / -\ - theory (Fig. 17). The

low value of the forward

800 / '0 motion ratio p = 0.3

- 0 determines an inversion

600 - _ ___ _ circle with a relatively

Ssmall diameter as compared

to that of the rotor. The400
absence of a separated

200 zone in the retreating

blade was observed. The

Mach number at the tip of
0,2 0,4 0,6 0, 8 r/R 1

.. the advancing blade is
Fig. 16. Three-blade propeller. 0.78.
-- e-- S.N.I.A.S. computation
--o-- Compressible doublets
*-0-. Uncorrected incompressible The pressure doublets

doublets
r/r Normalized distance to the break down according to

propeller axis formula (21), with n = 5
N/m Lift per unit length and m = 5, which yields

55 unknowns Zi, Xij, Yij..
which must be determined by 55 equations. Five equations can

be written for each blade position; it is therefore necessary to

compute the induced velocities for 11 blade positions, which will

be taken equidistant and arranged as shown in Fig. 17. The

normal velocity in the interior of the inversion circle is not

low when compared with the tangential velocity, which foils

the linearized theory, but lift is low because the resulting

velocity is low. These considerations led us to replace the

normal velocity conditions by the zero lift condition for the

sections involved. The small area of the inversion circle in

the example studied provides for this computation hypothesis.
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60m/s a h =-84 The blades used could be

considered as rigid with a very

good approximation. A series of

differentially mounted pressure

_q. sensors and placed in four dif-

ferent sections with r/R 1 = 0.52;
6

5 -- 0.71; 0.855 and 0.952, permitted

S/ the measurement of

9 ;Pm(t)=J - dl

i -hord 0

i " (P0 static pressure in the air

i 2 flow, C chord of the blade).

The evolution of P (t) ism
Fig. 17. 2 = 920 t/min, shown in Fig. 18 for the four

= 0.3, B = 1.22-7.55 cosp. sections. In the translation of

the tangency condition, the motion

of the blade is assumed to be known. It is taken as equal to

theexperimentally observed motion. The problem is thus reduced

to the solution of a linear system of 55 equations with 55 un-

knowns. Fig. 18 presents the results obtained. The azimuth

position,.having as its origin the extreme rear position of the

-blade, is plotted in abscissa. Themaximum error is situated in

the vicinity of the 0 ? and 1800 azimuths, which can be sought

to be explained by the following facts:

1) The respective position of the lift segment and of

the collocation line are linked to the pressure distribution

along the airfoil; it is possible that the importance of the radial

velocity component for the zones approaching 00 and 1800, lead

to a systematic error by changing the pressure distribution;
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N)
00

- -00e--- oL--t~---i --- o' I _

0.2 0.2,

S900 1800 2700 + 360 0  0 900 1800 2700 ' 3600

Fig. 18 a. Distance to the Fig. 18 b. Distance to the
axis r/R = 0.52 axis r/R = 0.71

Experiment Experiment
-- o-- Doublets. -- o-- Doublets

Pm d x- IP = d (X).

S= azimuth of the blade. 9 = azimuth of the blade.

.0.2 0,2

90, 180 °  2700 4 3600 900 180 °  2700 'P 360

Fig. 18 c. Distance to the Fig. 18 d. Distance to the
axis r/R = 0.855 axis r/R = 0.952

Experiment Experiment

-- o-- Doublets. -- o-- Doublets

P"= A d P,,

S= azimuth of the blade. P = azimuth of the blade.



2). The existence of vortices issuing from the hub and the

wing fittings is negligible, and .this can be important in the

vicinity of the 00 azimuth.

Harmonic Analysis of Results

Fig 19 shows the evolution of the static component and

of the harmonic components of lift as a function of the reduced

distance to the axis of rotation.

The views at the left show the evolutin. of the compo-

nents in cosine and those at the right in sine:

P t, = A + A ) cos Qt + B sin f2t + A ( ) cos 2lt + ...

The origin of the times is determined by the passage of the blade /3-15

past 00 azimuth. The upper harmonics of order four have not

been shown because experience, as well as the computation made,

show that their level is negligible. The agreement between

theory and experiment is still good except for the cosine term

of the first harmonic which is obtained by summation

A. 2r cos Qh dr.

The error in connection with this coefficient can be ex-

plained if the curves in Fig. 18 are taken into consideration.

It will actually be seen that theory overestimates lift for

p in the vicinity of 00 and that it underestimates it for in

the vicinity of 1800. Now for these azimuth values, cosQT is

respectively close to +1 and to - 1 and under these conditions
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Ao the errors are compounded when

, tthe integral yielding Al is

0,02- calculated.

0,5

0 ,5 0,01 This is no longer the

-01 O _0 - case for A 2(r/R 1 ) since the
T 0 011

S.... oerrors are multiplied by the
A, B, terms in the vicinity of +1

A 2  0.5 B 2  and, being of opposite sign,

S- they are compensated. The

o, . unfavorable case is reproduced

for the coefficient of cos3Qt;
o,01 0.01 B3

o0 1 -- 0 Fig. 19 actually shows that
0 - 1 05 r the agreement is not so good

A 4  B4 for A 3 (r/R1). Conversely,o1o- 0o01
0n . ----- . the good results obtained for

the 900 and 2700 azimuths
Fig. 19 . rR in abscissa. (see Fig. 18) involve a good
-x- Experience
--o-- Theory agreement for the terms at

Harmonic analysis in ordinate sin(k2t) (see Fig. 19) since

Ai = term in cosine the maximum errors are multi-
Bi = term in sine plied in the summations of

the harmonic analysis by small

sin(k2t). The results published in [3], already cited, present

the same phenomenon of very important errors, particularly, with

respect to term Al(r/R 1 ). These results originate in the use of

a vortex method with a very elaborate wake deformation. This

tends to prove that the errors in connection with terms Al and

A3, in our results, do not originate in the cylindrical deforma-

tion adopted for the wake, but probably originate in the

schematization of the blade by a single lifting line.; .%-inrce"t his

simplification is common to both methods.
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Overall Performance of the Rotor

At the time of the test, the mean resultant of the aero-

dynamic forces exerted on the rotor were measured. The component

along the rotor axis rose to 4682 N. Another test conducted

under the same conditions, after removing the blades, yielded

for the blade head and fittings 42 N, which yields 4640 N for

the blades alone, neglecting the mutual interactions. Computa-

tions yield 4417 N, that is an error of 4.8%.

Examination of the curves in Fig. 18 show that it would

have been useful to know the induced velocities in a number of

azimuthal position greater than 11, Which amounts to increasing

the number m of harmonics studied. The description of the

evolution of lift in time being better it is possible that results

closer to experiment will be obtained.

V. Conclusion

The adjustment of the computation program in the compres-

sible unsteady linear theory made it possible to reproduce the

experimental results with a good degree of accuracy, in the case

of a sufficiently sound flight which did not present due impor-

tant separations or local incidences outside the inversion

circle and its vicinities, where lift remains low. Since these

results were obtained without any empirical correction on the

basis of perfectly defined simplifying hypotheses regarding the

position of the liftipng ineand other collocation points and

regarding wake deformation and expressionof the tangency

condition, it is possible that experience may suggest corrections

to improve this agreement in the area of flight where the

linearized theory is still justified.

Manuscript submitted 14 January 1972.
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